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Abstract

Using a unitary model operator, the shortrange correlations between nucleons in nuclei
have been considered. To achieve healing in the wave functions, short-range pseudo-
potentials are required to be added to the nucleon-nucleon potential. With the intro-
duction of the pseudopotentials, the matrix element for the effective interaction in
nuclei is developed with correlated basis wave functions. The tensor forces and the
short-range pseudopotentials are renormalized in second-order perturbation theory.
Hartree-Fock calculations are carried out for the two finite closed-shell spherical nuclei
1603 and 40Ca. The calculations of the resulting effective Hamiltonian are carried out
with an effective interaction derived from the Tabakin potential. The present calcula-
tions of the binding energies per particle for the 160 and 40Ca nuclei are in agreement
with the experimental measurements.

1. Introduction

From phase-shift analysis, it has been realized that the nucleon-nucleon
interactions exhibit very strong repulsive nuclear forces at short distances.
In that sense, the nuclear nucleon-nucleon potential is expressed as a long-
range attractive potential surrounded by a very short-range repulsive potential.
The presence of these short-range repulsive forces complicates the nuclear
structure calculations in obtaining satisfactory values for the static properties
of nuclei. The short-range correlations have been described by different
interesting approaches that had been developed, such as the reaction matrix
theories, the separation, the reference spectrum and the variational methods.
In the case of nonlocal nucleon-nucleon interactions, it is found that the
unitary model operator is more useful to take into account the short-range
correlations in nuclei.
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In three preceding papers (Osman, 1976a~c), referred to as I, II, and III,
respectively, we considered the short-range correlations using a unitary model
operator. Short-range pseudopotentials are required to be added to the short-
range repulsive part of the nucleon-nucleon potential to achieve healing in
the wave functions and to produce zero phase shift in the pair state. With
these pseudopotentials, an effective Hamiltonian is obtained. The healing of
the correlated wave functions, using the short-range pseudopotentials, is
obtained taking into account the second-order terms from both the tensor
forces and the pseudopotentials. Hartree-Fock calculations have been applied
to obtain the binding energies per particle for the two finite closed-shell
spherical nuclei '°0 and 4°Ca. The Hartree-Fock equations have been carried
out using the Hamada-Johnston (1962), Yale group (Lasilla et al., 1962) and
Reid (1968) potentials and also for a potential calculated by us (Osman,
1977) according to meson exchange between nucleons. Another effective
potential for nucleon-nucleon calculations had been suggested by Tabakin
(1964), which matches the different partial-wave nucleon-nucleon phase
parameters. Tabakin defined a suitable set of separable potentials to produce
a smooth two-body wave function. The Tabakin potential introduces a good
interaction model because it lacks realistic short-range calculations which,
however, are implicitly assumed to be of little importance for low-lying
levels of nuclei. The model potential defined by Tabakin is taken to be
separable of the Yamaguchi type (Yamaguchi, 1954; Yamaguchi and
Yamaguchi, 19542) as the sum of a short-range repulsive part plus a long-
range attractive part.

In the present paper, the short-range correlations in nuclei are considered
using a unitary model operator. Short-range pseudopotentials are added to
the repulsive short-range part of the nuclear nucleon-nucleon potential to
produce zero phase shift in the pair state. These pseudopotentials are
required to be added to achieve healing of the correlated wave functions.
The healing of the correlated wave functions, using the short-range pseudo-
potentials, is obtained taking into account the second-order terms from both
the tensor forces and the pseudopotentials. The mathematical expressions
for the procedure is given explicitly in our preceding papers I, II, and IIL In
the present work we calculate the binding energies per particle for the two
finite closed-shell spherical nuclei 160 and 49Ca. In the present calculations,
the Hartree-Fock equations are applied using the Tabakin potential for the
nuclear nucleon-nucleon interaction. Corrections for both the Coulomb
energy and the center-of-mass energy are also taken into account.

In Section 2 the Tabakin potential model used is introduced. Expressions
for the effective Hamiltonian and the binding energy as an application of
Hartree-Fock calculations are given in Section 3. Section 4 is left for calcula-
tions and discussion.

2 These two articles will be referred to together simply as “Yamaguchi.”
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2. The Tabakin Potential Model Used

Tabakin suggested a potential model that is a nonlocal separable potential
defined as

V) =% Y [gar(8ar’ (") + har Dheg (Y 2 (DY ()
oMLL 2.1

where « denotes the quantum numbers JTS. The function % ﬁfL (fyisa
normalized eigenstate of total angular momentum J and its Z component
M; it is a combination of an orbital angular momentum state YJ}fL (f),and a
total spin state xlgls and A= #2/m (m is the nucleon mass):

M oM
Y o, (®) =¥ jr5(6) Pr
= 3 (M Mg|CpslM) YYL(E) Xy SPy (2.2)
MgMj,
Py is a projection operator that projects out an eigenstate of total isospin 7,
and its Z projection T'5 so that

T
P XT3 = 5TT'X;3 (2.3)

The complete partial-wave decomposition of the model potential expressed

by equation (2.1), permits independent interactions in each allowed state.

Forbidden states naturally have no interactions. The symbols g,z (r} and

hor (1) refer to the attractive and repulsive parts of the potential, respectively.
In the relative coordinates, the Schrodinger equation for such a nonlocal

potential is

~RTY(0) + [ VO X)) ' = E (D) @4)

where E,, is the total energy in the center-of-mass system £, = xky?. Trans-
forming to the momentum space representation, one has

X (kn? ~ %) Yn(K) = [ dK' VK, K) Y (K) @)
with
5 = o [ ey, ar 26)
n (2m)372 n :

where 71k,, is the incident momentum.
Correspondingly, the potential in momentum space is

vk, k) :% x M%J Tk KD G (O 35K 2.7

where
Fo e kY = T [ —gop (k) 8o (K'Y + o (g, ()] (2.8)
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In expression (2.8), the potentials g,z (k) and k,y (k) in their momentum
representation are represented by the Yamaguchi form for the S and D states,
where these potential functions have the expressions

go(k) =y(k* +a*)

ho(k)= Kk [(k — d)* + %] T [(k+d)* + 2] !
g2(k) =¥k [(k - ¢)* +a*] 7 [(k +&)* +a2%] !
ho(k) = Bk*[(k — d)* +b*] 7' [(k +d)* +b*] !

2.9)

The parameters v, §, 4, and b correspond to potential strengths and ranges,
and d is the hard-core radius.

3. The Effective Hamiltonian and Binding Energy

Using the same notations as in our papers I, Il and III, an expression for
the effective Hamiltonian is obtained considering only one- and two-particle
interactions. This effective Hamiltonian H, ¢ is expressed as

Hetr= S al Cilhy | g
i

1
+ ; v djll}- { ‘I’” ‘ Vllz - Vp + V?D

ijmn
+ve0(Qfe)ve” +1,(0/e)vy | W) ity 3.1)

with the definition of each quantity here as presented in papers I, I1, and IIL.
In expression (3.1), ¥/ 1, stands for the long-range part of the nucleon~nucleon
potential, v, is the short-range pseudopotential, and VT is the off-diagonal
part of the nucleon-nucleon potential which received contributions only
from the tensor force.

V?D (Q/e) V?D and v,(Q/e)v, are the second-order terms in the off-diagonal
tensor forces V?D and in the pseudopotentials v, respectively. Following Kuo
and Brown (1965), to consider the second-order terms, the Pauli principle
projection operator @ and the appropriate energy denominator e are expressed
as

0 o fork? 43K <k
Ok, K, kp)={1 fork — 5K > k¢ (3.2)
(k* +3K* — kKK otherwise

and

" n’
e=—— (i’ +k®)+ A=—(k* +3K*) + A (3.3)
2m m
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where the intermediate plane wave states of momenta k; and k, are
introduced,
k=1(k; — ko)

34
K=k;tk, (3.4)

and A is a measure of the binding of the interacting pair in the nucleus.
To apply the Hartree-Fock method to calculate the binding energy per
particle, let us denote the single-particle potential by ¥V, where

A
IV 2 Kik|vepe ik ) — ik | verr 1 RG] (3.5)
k=1
and if 4 is the kinetic energy operator, then the binding energy is given by
Ey= 3;1 Pt [y LRI + 3 |V D] (3.6)
where
"
Pn,n, = 2 CnlCn’l 3.7
k=1
and
> K lh ' +<ng | VA C'il =e,-C£l1 (3.8)
n

4. Culculations and Discussion

In the present work, calculations of the present proposed model are made
to investigate short-range correlations in nuclei. Here, the nuclear nucleon-
nucleon interaction is taken as the Tabakin (1964) potential model presented
in Section 2 with two different sets of parameters due to Yamaguchi (1954),
Yamaguchi and Yamaguchi (1954}, and Breit et al. (1962). The two different
representations of parameters are given in Table I. The pseudopotentials
required to be added to achieve healing in the correlated wave functions have
been calculated so as to produce zero phase shift in the pair state. These
pseudopotentials have been calculated for different values of # and different
values of the oscillator size parameter v of the basis wave functions, which
are taken as harmonic-oscillator wave functions. The calculated values of the
required pseudopotentials are listed in Tables 1I-VI for the different S, P,
and D states. The matrix elements of the first- and second-order terms have

TABLE I. Parameters of the nucleon-nucleon Tabakin potential

Potential a-t -1 p-1 J-1 Vo v,
parameters fm fm fm fm MeV MeV

Yamaguchi 0.752 0.125 - - 113.9 660.5
Breit et al. 0.834 - 0.801 0.694 1159 235.6
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TABLE II. Pseudopotentials for the 150 state. Healing distance = 1.02 fm, Tabakin
potential (Yamaguchi)

Pseudopotentials (MeV) for different » (fm)

il 1.48 1.76 2.16 2.38
0 ~4.6 0.0 0.0 0.0
1 -25.1 —16.3 ~10.3 -1.7
2 ~53.5 —42.8 -22.1 —14.8
3 ~85.9 -79.4 ~41.9 -28.9
4 —131.2 —118.1 ~65.4 —-45.4
TABLE Ill. Pseudopotentials for the 15, state. Healing distance = 1.02 fm, Tabakin
potential (Breitetal.)
Pseudopotentials (MeV) tor different v (fm)
n 1.48 1.76 2.16 2.38
0 ~5.6 0.0 0.0 0.0
1 -28.3 -20.5 ~10.9 -7.9
2 -61.1 -50.4 -25.2 -16.1
3 -93.9 —83.6 ~44.3 -30.3
4 -139.2 -127.7 -68.1 —46.6
TABLE IV. Pseudopotentials for the 3§ state. Healing distance = 1.05 fm, Tabakin
potential (Yamaguchi)
Pseudopotentials (MeV) for different v (fm)
n 1.48 1.76 2.16 2.38
0 ~-87.1 ~79.2 —73.8 —69.9
1 —104.3 ~94.1 -86.3 —81.1
2 -115.2 —108.8 -95.9 -90.3
3 -149.9 -123.5 -114.2 —108.5
4 ~179.7 -1394 -133.1 —-126.8
TABLE V. Pseudopotentials for the 3§ state. Healing distance = 1.05 fm, Tabakin
potential (Yamaguchi)
Pseudopotentials (MeV) for different » (fm)
n 1.48 1.76 2.16 2.38
0 -105.4 -98.2 ~89.8 —-87.9
i —-126.1 —-116.4 -106.5 -99.4
2 —-148.3 —132.1 ~115.1 —-111.3
3 ~183.8 —-157.9 -142.2 —135.6
4 ~225.5 —-175.3 ~166.7 ~152.2
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TABLE VI, Pseudopotentials for the P and D states. n =0, v = 1.76 fm

Pseudopotentials (MeV)
Tabakin Tabakin Healing distance
States (Yamaguchi) (Breit et al.) (fm)
1p, -586.3 -717.5 0.99
3Py ~214.8 -259.9 0.99
3P, -223.1 —268.6 0.99
3p, ~12.4 -15.7 0.99
3D —~45.1 -55.8 0.98
3D, ~185.8 -229.9 0.98
3D3 -182.4 -226.7 0.98
1D, —-11.5 —14.1 0.98

also been calculated. In our calculations, we considered the values for
»=1.76 fm, A=20 MeV, and kr= 1.4 fm™1. Kuo and Brown (1965) had
shown that the values of k contributing to the integral are quite large, so the
upper limit of the K integral could be taken as 2ky. Also, the value used for
A =20 MeV is reasonable for the least tightly bound orbitals where one
usually applies the shell theory. In our paper It, we found that increasing A
by about 20 MeV yields a decrease in the second-order matrix element of
about 5%. The change of k¢ by 0.1 fm™! introduces a change in the matrix
elements of about 4%, where the matrix elements will decrease by this per-
centage on increasing ky by that value. Also, the dependence of the second-
order terms on variables of the center-of-mass quantum numbers NV and L is
found to lead to an uncertainty in these terms of about 10%. Dahiblom et al.
(1964) found that the third-order terms are less than the second-order terms
by about 20%, and also that the fourth-order terms are smaller, and so on.
Our present calculations for the first- and second-order matrix elements are
given in Tables VII and VIIL

In the present work, the Hartree-Fock equations are solved by an iteration
procedure to obtain the binding energy per particle. The Hartree-Fock
method is applied taking into account all the effects of tensor forces. The
second-order terms from tensor forces are calculated and taken into account.
The second-order terms from the pseudopotentials are also calculated and
taken into account. Also, simple corrections due to both Coulomb energy
and center-of-mass energy corrections are calculated and included.

The present work is applied to finite nuclei. In our calculations we used
five harmonic-oscillator functions in the determination of each orbital. The
present calculations have been applied for the two nuclei 160 and 4%Ca for
different values of the oscillator size parameter ». The present calculated
values of the binding energies per particle are listed in Table IX.

From the present calculations, it is clear that the unitary model operator
approach is useful in discussing the effective interactions in nuclei. Also,
many effects are quite large and must be taken into account, such as the
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TABLE VIL First- and second-order matrix elements for the Tabakin potential

(Yamaguchi)
First order Second order

Sate  nl NL vhy—v,  sPPQeP 0ha —5p) @) Gy — vp)
384 00 00 0.70 -9.62 —-0.91
38, 10 00 4.05 -10.11 -1.39
18, 00 00 -7.04 ~{.26
18, 10 00 ~4.96 —-0.26
1py 01 00 3.24 -1.85
3Py 01 00 —2.83 ~0.35
3p, 01 00 3.26 ~0.47
3p, 01 00 ~-1.51

ip, 02 00 —1.23

ng a2 00 1.63

Dy 02 00 -2.52

3D; 02 00 0.12

TABLE VIII. First- and second-order matrix elements for the Tabakin potential
(Breitet al.)

First order Second order

State nl  NL Yo — vy v?D(Q/e)v(%D Wz vp) (Qfe) (W2 — vp)
384 00 00 0.69 -9.29 -0.85
38, 10 00 3.96 ~10.01 -1.21
1S, 00 00 —6.88 -0.23
1S, 10 00 —4.84 ~0.23
1p; 01 00 3.03 -1.72
3P 01 00 -2.69 -0.32
3p, 01 00 3.08 -0.43
3P, ot 00 -1.31

D, 02 00 -0.92

3D, 02 00 145

3D, 02 00 —248

3D3 02 00 011

TABLE IX. Binding energy per particle

Binding energy per particle (MeV) for

different y {fm)

Nucleus potential parameters used 1.48 1.76 2.16 2.38
160 Tabakin (Yamaguchi) ~6.63 —~6.87 —4.42 —4.09
160 Tabakin (Breit et al.) —6.36 -6.61 —4.06 —3.76
40Ca Tabakin (Yamaguchi) -8.00 -8.45 -7.42 —-6.17

40Ca Tabakin (Breit et al.) -7.99 —8.50 -7.37 —6.14
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second-order terms from both the tensor forces and the pseudopotentials.
These effects, together with introducing pseudopotentials, help much to
obtain reasonable agreement with the ground-state properties of finite closed-
shell spherical nuclei.
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