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Abstract 

Using a unitary model operator, the short-range correlations between nucleons in nuclei 
have been considered, To achieve healing in the wave functions, short-range pseudo- 
potentials are required to be added to the nucleon-nucleon potential. With the intro- 
duction of the pseudopotentials, the matrix element for the effective interaction in 
nuclei is developed with correlated basis wave functions. The tensor forces and the 
short-range pseudopotentials are renormatized in second-order perturbation theory. 
Hartree-Fock calculations are carried out for the two finite closed-shell spherical nuclei 
160 and 4°Ca. The calculations of the resulting effective Hamittonian are carried out 
with an effective interaction derived from the Tabakin potential. The present calcula- 
tions of the binding energies per particle for the 160 and 40Ca nuclei are in agreement 
with the experimental measurements. 

1. h~troduction 

F r o m  phase-shift analysis, it has been realized that  the nuc leon-nuc leon  
interact ions exhibi t  very strong repulsive nuclear  forces at short distances. 
In that  sense, the nuclear  nuc leon-nuc leon  potent ia l  is expressed as a long- 
range at t ract ive potent ia l  surrounded by a very short-range repulsive potent ial .  
The presence o f  these short-range repulsive forces compl ica tes  the nuclear  
structure calculat ions in obtaining sat isfactory values for the static propert ies 
of  nuclei. The short-range correlat ions have been described by different  
interest ing approaches  that had been developed,  such as the react ion mat r ix  
theories,  the separation,  the reference spec t rum and the variat ional  methods.  
tn the case o f  nonlocal  nuc l eon -nuc leon  interact ions,  it is found that  the 
unitary mode l  opera tor  is more useful to take in to  account  the short-range 
correlat ions in nuclei. 
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In three preceding papers (Osman, 1976a-c), referred to as I, lI, and III, 
respectively, we considered the short-range correlations using a unitary model 
operator. Short-range pseudopotentiats are required to be added to the short- 
range repulsive part of the nucleon-nucleon potential to achieve healing in 
the wave functions and to produce zero phase shift in the pair state. With 
these pseudopotentials, an effective Hamittonian is obtained. The healing of 
the correlated wave functions, using the short-range pseudopotentials, is 
obtained taking into account the second-order terms from both the tensor 
forces and the pseudopotentials. Hartree-Fock calculations have been applied 
to obtain the binding energies per particle for the two finite closed-shell 
spherical nuclei 160 and 4uCa .  The Hartree-Fock equations have been carried 
out using the Hamada-Johnston (1962), Yale group (Lasilla et al., 1962) and 
Reid (1968) potentials and also for a potential calculated by us (Osman, 
1977) according to meson exchange between nucleons. Another effective 
potential for nucleon-nucleon calculations had been suggested by Tabakin 
(1964), which matches the different partial-wave nucleon-nucleon phase 
parameters. Tabakin defined a suitable set of separable potentials to produce 
a smooth two-body wave function. The Tabakin potential introduces a good 
interaction model because it lacks realistic short-range calculations which, 
however, are implicitly assumed to be of little importance for low-lying 
levels of nuclei. The model potential defined by Tabakin is taken to be 
separable of the Yamaguchi type (Yamaguchi, 1954; Yamaguchi and 
Yamaguchi, 19542) as the sum of a short-range repulsive part plus a long- 
range attractive part. 

In the present paper, the short-range correlations in nuclei are considered 
using a unitary model operator. Short-range pseudopotentials are added to 
the repulsive short-range part of the nuclear nucleon-nucleon potential to 
produce zero phase shift in the pair state. These pseudopotentials are 
required to be added to achieve healing of the correlated wave functions. 
The healing of the correlated wave functions, using the short-range pseudo- 
potentials, is obtained taking into account the second-order terms from both 
the tensor forces and the pseudopotentials. The mathematical expressions 
for the procedure is given explicitly in our preceding papers I, II, and III. In 
the present work we calculate the binding energies per particle for the two 
finite closed-shell spherical nuclei 160 and 4° Ca .  In the present calculations, 
the Hartree-Fock equations are applied using the Tabakin potential for the 
nuclear nucleon-nucleon interaction. Corrections for both the Coulomb 
energy and the center-of-mass energy are also taken into account. 

In Section 2 the Tabakin potential model used is introduced. Expressions 
for the effective Hamiltonian and the binding energy as an application of 
Hartree-Fock calculations are given in Section 3. Section 4 is left for calcula- 
tions and discussion. 

2 These two articles will be referred to together  simply as "Yamaguchi . "  
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2. The TabaMn Potential Model Used 

Tabakin suggested a potential model that is a nonlocal separable potential 
defined as 

r t M ^ M ^t 
V(r,r')= ~, ~ [--g~L(r)go:L'(r)+haL(r)ho~L'(r)]q¢c~L(r)qlac,(r ) 

oa~iLL' (2.1) 

where c~ denotes the quantum numbers JTS. The function q/M(f) is a 
normalized eigenstate of total angular momentum J and its Z component 
M; it is a combination of an orbital angular momentum state y f L  (f), and a 
total spin state xMs s and X = h2/m (m is the nucleon mass): 

M ^ q/M 
q'#' ac (r) = jLs(r )PT 

= ~ CMLMsICLslJM)  F~LL(f)xMSpT (2.2) 
M s M L  

PT is a projection operator that projects out an eigenstate of total isospin T, 
and its Z projection T 3 so that 

7'a % (2.3) PT" XT = ~TT'XT 

The complete partial-wave decomposition of the model potential expressed 
by equation (2.1), permits independent interactions in each allowed state. 
Forbidden states naturally have no interactions. The symbols g ~  (r) and 
hac (r) refer to the attractive and repulsive parts of the potential, respectively. 

In the relative coordinates, the Schr6dinger equation for such a nonlocal 
potential is 

+ f V(r, r') ~n(r' ) dr' =En~n(r  ) (2.4) 

where E n is the total energy in the center-of-mass system E n = ~kn 2 . Trans- 
forming to the momentum space representation, one has 

~i ( k n  2 - k 2 )  ~n(k) = ] dk' V(k, k') ~n(k') (2.5) 

with 

1 f 
~n(k) - ~ e - ik ' r  fin(r) dr (2.6) 

(2rr) 3/2 

where hk  n is the incident momentum. 
Correspondingly, the potential in momentum space is 

,~ %=2--~ E 3~LL'(k, ' c~ ^ ,ce ^' k )gl  }IL (k) aj ~z'l( k ) (2.7) 
7i a M L L  ' 

where 

~LLL,(k, k ' )  = i L ' ' L  [--gaL(k)gaL'(k') + h~L(k)hoa2(k')] (2.8) 
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In expression (2.8), the potentials g~z (k) and hc~L(k) in their momentum 
representation are represented by the Yamaguchi form for the S and D states, 
where these potential functions have the expressions 

go(k) = ,y(k 2 + a2) -1 

ho(k  )= /~k  2 [ ( k -  d)  z q-b 2 ] - I  [(k + d )  2 q-b 2] -1 
(2.9) 

g2(~) = ~ k  2 [(k - ~-)2 + ~-2] -1 [(k + ~-)2 + ~-2] -1 

h2(k) = ~k 2 [(k - d)  2 + ~'2] -1 [(k + 3) 2 + b 2 ] -1 

The parameters T,/3, a, and b correspond to potential strengths and ranges, 
and d is the hard-core radius. 

3. The Effective Hamiltonian and Binding Energy 

Using the same notations as in our papers I, II and III,  an expression for 
the effective Hamiltonian is obtained considering only one- and two-particle 
interactions. This effective Hamiltonian Heff is expressed as 

Heff  = E a?i (iih 1 [f) aj 
ij 

1 

2~ 
iflTq tl 

OD OD 
+ ~ r  (Q/e)ur + up(Q/e)Up [qErnn)arna n (3.1) 

with the definition of each quantity here as presented in papers I, It, and III. 
In expression (3. I), J~2 stands for the long-range part of  the nucleon-nucleon 
potential, Up is the short-range pseudopotential, and u °D is the off-diagonal 
part of  the nucleon-nucleon potential which received contributions only 
from the tensor force. 

v°D(Q/e)t) OD and up(Q/e)Up are the second-order terms in the off-diagonal 
tensor forces u °B and in the pseudopotentials up, respectively. Following Kuo 
and Brown (1965), to consider the second-order terms, the Pauli principle 
projection operator Q and the appropriate energy denominator e are expressed 
as 

for k z + ¼K 2 < k~ 

Q(k, K, ky) = for k - ½K > ky (3.2) 

k 2 + ~ K  2 - kfz)/kK otherwise 

and 

~ h ~ 
e =2m (k12 +k22)+Ax . . . .  m(k2 + ~K2) +A (3.3) 
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where the intermediate plarle wave states of momenta k 1 and k 2 are 
introduced, 

k = ½(k I - k2) 
(3.4) 

K = k 1 +k2 

and A is a measure of  the binding of  the interacting pair in the nucleus. 
To apply the Hartree-Fock method to calculate the binding energy per 

particle, let us denote the single-particle potential by V, where 
A 

( i i  V i j )  = ~ [ ( i k l U e f f l j k ) - ( i k i P e f f l k j ) ]  (3.5) 
k = l  

and i fh  is the kinetic energy operator, then the binding energy is given by 

EO = ~,  Pnln; [( fl t [ h In'  I) + ½(n ~ t V In'l>] (3.6) 
.v/rt 

where 

and 

A 
Pnl n'~ ~ k k = CnC~,  ' (3.7) 

k = l  

[<,,, J h In',> + <,,, J V ln', >l -- , ;C/ ,  
,q 

(3.8) 

4. Calculations and Discussion 

In the present work, calculations of the present proposed model are made 
to investigate short-range correlations in nuclei. Here, the nuclear nucleon- 
nucleon interaction is taken as the Tabakin (1964) potential model presented 
in Section 2 with two different sets of  parameters due to Yamaguchi (1954), 
Yamaguchi and Yamaguchi (1954), and Breit et al. (1962). The two different 
representations of  parameters are given in Table I. The pseudopotentials 
required to be added to achieve healing in the correlated wave functions have 
been calculated so as to produce zero phase shift in the pair state. These 
pseudopotentials have been calculated for different values o f n  and different 
values of  the oscillator size parameter v o f  the basis wave functions, which 
are taken as harmonic-oscillator wave functions. The calculated values of  the 
required pseudopotentials are listed in Tables I I -VI for the different S, P, 
and D states. The matrix elements o f  the first- and second-order terms have 

TABLE I. Parameters of the nucleon-nucleon Tabakin potential 

Potential a -1 c -1 b -1 d-1 V,y Vp 
parameters fm fin fm fm MeV MeV 

Yamaguchi 0.752 0.125 - - 113.9 660.5 
Breit et al. 0.834 - 0.801 0.694 115.9 235.6 
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TABLE I1. Pseudopotentials  for the iS  o state. Itealing distance = 1.02 im,  Tabakin 
potential  (Yamaguchi) 

Pseudopotent ials  (MeV) for different v (fm) 

n 1.48 t .76 2.16 2.38 

0 --4.6 0.0 0.0 0.0 
1 - 2 5 . 1  - 1 6 . 3  - 1 0 . 3  - 7 . 7  
2 - 5 3 . 5  - 4 2 . 8  - 2 2 . 1  - 1 4 . 8  
3 - 8 5 . 9  - 7 9 . 4  - 4 t . 9  - 2 8 . 9  
4 - 131.2 118.1 - 6 5 . 4  - 4 5 . 4  

'FABLE Ill. Pseudopotent ials  for the 1S o state. Healing distance = 1.02 fro, Tabakin 
potential  (Breit et  al.) 

Pseudopotent ials  (MeV) for different v (fro) 

n 1.48 1.76 2 . t6  2.38 

0 --5.6 0.0 0.0 0.0 
1 - 2 8 . 3  - 2 0 . 5  ...... 10.9 - 7 . 9  
2 - 6 1 . 1  - 5 0 . 4  - 2 5 . 2  - 1 6 . t  
3 - 9 3 . 9  - 8 3 . 6  -. 44.3 - 3 0 . 3  
4 - 1 3 9 . 2  - 1 2 7 . 7  - 6 8 . 1  - 4 6 . 6  

TABLE IV. Pseudopotentials  for the 3S 1 state. Healing distance = 1.05 fro, Tabakin 
potential  (Yamaguchi)  

Pseudopotentials  (MeV) for different v (fm) 

n 1.48 1.76 2.16 2.38 

0 - 8 7 . 1  - 7 9 . 2  - 7 3 . 8  69.9 
1 --104.3 - 9 4 . t  - 8 6 . 3  - 8 1 . 1  
2 - 1  I5 .2  - I 0 8 . 8  - 9 5 . 9  - 9 0 . 3  
3 -149 .9  - 1 2 3 . 5  - 1 1 4 . 2  - 1 0 8 . 5  
4 - 1 7 9 . 7  - 1 3 9 . 4  - 1 3 3 . 1  - 1 2 6 . 8  

TABLE V. Pseudopotent ials  for the 3S 1 state. Healing distance = 1.05 fm, Tabakin 
potential  (Yamaguchi)  

Pseudopotent ials  (MeV) for different v (fm) 

n 1.48 1.76 2.16 2.38 

0 - 1 0 5 . 4  98.2 - 8 9 . 8  - 8 7 . 9  
1 - 1 2 6 . 1  - 1 1 6 . 4  --106.5 - 9 9 . 4  
2 - 1 4 8 . 3  - 1 3 2 . 1  - ,115 . l  - 1 1 1 . 3  
3 - 1 8 3 . 8  - 157.9 - 1 4 2 . 2  - 1 3 5 . 6  
4 - 2 2 5 . 5  - 1 7 5 . 3  - 1 6 6 . 7  - 1 5 2 . 2  
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TARLE VI. Pseudopotentials for the P and D states, n = 0, v = 1.76 fm 
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Pseudopotentials (MeV) 

Tabakin Tabakin Healing distance 
States (Yamaguchi) (Breit et al.) (i'm) 

1P 1 -586,3 -717.5 0.99 
3P o -214,8 -259.9 0.99 
3P1 -223.1 -268.6 0.99 
3P 2 -12,4 -15.7 0.99 
3D 1 --45.1 -55.8 0.98 
3D 2 -185.8 -229.9 0.98 
3D 3 -182.4 -226.7 0.98 
1D 2 -,11.5 -14,1 0.98 

also been calculated, in our calculations, we considered the values for 
= t .76 fm, A = 20 MeV, and kf = 1.4 fm -1. Kuo and Brown (1965) had 

shown that the values of  k contributing to the integral are quite large, so the 
upper limit o f  the K integral could be taken as 2kf. Also, the value used for 
A = 20 MeV is reasonable for the least tightly bound orbitals where one 
usually applies the shell theory. In our paper III, we found that increasing A 
by about 20 MeV yields a decrease in the second-order matrix element of 
about 5%. The change of  k t, by 0.1 fm -1 introduces a change in the matrix 
elements of  about 4%, where the matrix elements will decrease by this per- 
centage on increasing kf by that value. Also, the dependence of  the second- 
order terms on variables of the center-of-mass quantum numbers N and L is 
found to lead to an uncertainty in these terms of  about 10%. Dahlblom et al. 
(1964) found that the third-order terms are less than the second-order terms 
by about 20%, and also that the fourth-order terms are smaller, and so on. 
Our present calculations for the first- and second-order matrix elements are 
given in Tables VII and VIII. 

In the present work, the Hartree-Fock equations are solved by an iteration 
procedure to obtain the binding energy per particle. The Har t ree-Fock 
method is applied taking into account all the effects of tensor forces. The 
second-order terms from tensor forces are calculated and taken into account. 
The second-order terms from the pseudopotentials are also calculated and 
taken into account. Also, simple corrections due to both  Coulomb energy 
and center-of-mass energy corrections are calculated and included. 

The present work is applied to finite nuclei. In our calculations we used 
five harmonic-oscillator functions in the determination of  each orbital. The 
present calculations have been applied for the two nuclei t60  and 4°Ca for 
different values of  the oscillator size parameter u. The present calculated 
values of  the binding energies per particle are listed in Table IX. 

From the present calculations, it is clear that the unitary model  operator 
approach is useful in discussing the effective interactions in nuclei. Also, 
many effects are quite large and must be taken into account, such as the 
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TABLE VII. First- and second-order matrix elements for the Tabakin potential 
(Yamaguchi) 

State 

First order 

nl NL ~ll 2 - Vp uOD (Q/e)uOD 

Second order 

(pl12 - Vp) (Q/e) (p/12 - Up) 

aS1 00 00 0.70 
351 10 00 4.05 
15o 00 00 -7 .04 
15o 10 00 -4.96 
tP 1 01 00 3.24 
3P o 0t 00 -2.83 
3P1 01 00 3.26 
3P 2 0t  00 -1.51 
1D 2 02 00 - t.23 
3D 1 02 00 1.63 
aD 2 02 00 -2.52 
3D 3 02 00 0.12 

-9 .62 
-10.11 

-0.91 
-1 .39 
-0 .26 
-0 .26 
-1.85 
--0.35 
-0.47 

TABLE VIII. First- and second-order matrix elements for the Tabakin potential 
(Breit et al.) 

State 

First order 

nl NL vll2 - ~,p vOD (Q/e)vOD 

Second order 

(P/12- Up) (Q/e) (P/12 - Vp) 

351 00 00 0.69 
351 10 00 3.96 
15 o 00 00 -6.88 
15 o 10 00 -4.84 
1P 1 01 00 3.03 
3P 0 01 00 -2.69 
3P t 01 00 3.08 
3P2 01 00 - t  .31 
1D~ 02 00 -0.92 
3DI 02 00 1.45 
3D 2 02 00 -2 .48 
3D 3 02 00 0.11 

-9.29 
-10.01 

-0.85 
-1.21 
-0.23 
-0.23 
-1 .72 
-0.32 
-0 .43 

TABLE IX. Binding energy per particle 

Nucleus potential parameters used 

160 Tabakin (Yamaguchi) 
160 Tabakin (Breit et al.) 
4°Ca Tabakin (Yamaguchi) 
4°Ca Tabakin (Breit et al.) 

Binding energy per particle (MeV)/'or 
different v (fm) 

1.48 1.76 2.16 2.38 

-6.63 --6.87 -4.42 -4.09 
-6.36 --6.61 -4.06 -3.76 
-8.00 -8.45 -7.42 -6.17 
-7.99 -8,50 -7.37 -6.14 
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second-order  terms f rom b o t h  the tensor  forces and the pseudopotent ia ls .  
These effects,  together  wi th  in t roducing pseudopotent ia ls ,  help m u c h  to 
obtain reasonable agreement  wi th  the ground-state proper t ies  o f  finite closed- 
shell spherical nuclei. 

Acknowledgments  

The author is grateful to Professors Abdus Salam and P. Budini as well as to the 
International Atomic Energy Agency and UNESCO for hospitality at the International 
Centre for Theoretical Physics, Trieste. Thanks are also due to the Centro di Caolco 
delI'Universit~ di Trieste for the use of the facilities there. 

References 

Breit, G., Hull, M. H., Lassila, K. E., Pyatt, K. D., Jr., McDonald, F. A., and Ruppel, H. M. 
(I962). Physical Review, 128,826,830. 

Dahlblom, T., F6gel, K.-G., Quist, B., and T6rn, A. (1964). NuclearPhysies, 56, 177. 
Hamada, T. and Johnston, I. D. (1962). Nuclear Physics, 34, 382. 
Kuo, T. T. S. and Brown, G. E. (1965). Physics Letters, 18, 54. 
Lassila, K. E., Hull, M. H., Jr., Ruppel, H. M., McDonald, F. A., and Breit, G. (1962). 

Physical Review, 126, 881. 
Osman, A. (1976a). Nuovo Cimento, 31A, 487. 
Osman, A. (1976b). Nuovo Cimento, 32A, 90. 
Osman, A. (1976c). Nuovo Cimento, 33A, 505. 
Osman, A. (1977). Letters at Nuovo O'mento (to be published). 
Reid, R. V., Jr. (1968).Annals of  Physics, 50, 411. 
Tabakin, F. (1964). Annals o f  Phydcs, 30, 51. 
Yamaguchi, Y. (1954). Physical Review, 95, 1628. 
Yamaguchi, Y. and Yamaguchi, Y. (1954). PhysicatReview, 95, 1635. 


